inequality: Inequality Measures¶
Description¶
gini_index()
gives the normalised Gini index, bonferroni_index()
implements the Bonferroni index, and devergottini_index()
implements the De Vergottini index.
Usage¶
gini_index(x)
bonferroni_index(x)
devergottini_index(x)
Arguments¶
|
numeric vector of non-negative values |
Details¶
These indices can be used to quantify the “inequality” of a sample. They can be conceived as normalised measures of data dispersion. For constant vectors (perfect equity), the indices yield values of 0. Vectors with all elements but one equal to 0 (perfect inequality), are assigned scores of 1. They follow the Pigou-Dalton principle (are Schur-convex): setting \(x_i = x_i - h\) and \(x_j = x_j + h\) with \(h > 0\) and \(x_i - h \geq x_j + h\) (taking from the “rich” and giving to the “poor”) decreases the inequality.
These indices have applications in economics, amongst others. The Genie clustering algorithm uses the Gini index as a measure of the inequality of cluster sizes.
The normalised Gini index is given by:
The normalised Bonferroni index is given by:
The normalised De Vergottini index is given by:
Here, \(\sigma\) is an ordering permutation of \((x_1,\dots,x_n)\).
Value¶
The value of the inequality index, a number in \([0, 1]\).
References¶
Bonferroni, C., Elementi di Statistica Generale, Libreria Seber, Firenze, 1930.
Gini, C., Variabilita e Mutabilita, Tipografia di Paolo Cuppini, Bologna, 1912.
See Also¶
The official online manual of genieclust at https://genieclust.gagolewski.com/
Gagolewski, M., genieclust: Fast and robust hierarchical clustering, SoftwareX 15:100722, 2021, doi:10.1016/j.softx.2021.100722
Examples¶
gini_index(c(2, 2, 2, 2, 2)) # no inequality
## [1] 0
gini_index(c(0, 0, 10, 0, 0)) # one has it all
## [1] 1
gini_index(c(7, 0, 3, 0, 0)) # give to the poor, take away from the rich
## [1] 0.85
gini_index(c(6, 0, 3, 1, 0)) # (a.k.a. the Pigou-Dalton principle)
## [1] 0.75
bonferroni_index(c(2, 2, 2, 2, 2))
## [1] 0
bonferroni_index(c(0, 0, 10, 0, 0))
## [1] 1
bonferroni_index(c(7, 0, 3, 0, 0))
## [1] 0.90625
bonferroni_index(c(6, 0, 3, 1, 0))
## [1] 0.8333333
devergottini_index(c(2, 2, 2, 2, 2))
## [1] 0
devergottini_index(c(0, 0, 10, 0, 0))
## [1] 1
devergottini_index(c(7, 0, 3, 0, 0))
## [1] 0.7662338
devergottini_index(c(6, 0, 3, 1, 0))
## [1] 0.6493506